Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathbf{M n B a}_{\mathbf{2}}\left(\mathrm{HPO}_{4}\right)_{\mathbf{2}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{PO}_{4}\right)_{\mathbf{2}}$

Wei Sun, Li-Zhi Sun, Teng-Teng Zhu, Biao-Chun Zhao and Jin-Xiao Mi*

Fujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China
Correspondence e-mail: jxmi@xmu.edu.cn

Received 11 May 2012; accepted 18 May 2012

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{Mn}-\mathrm{O})=0.003 \AA$; R factor $=0.025 ; w R$ factor $=0.075$; data-to-parameter ratio $=13.1$.

Crystals of manganese(II) dibarium bis(hydrogenphosphate) bis(dihydrogenphosphate), $\mathrm{MnBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, were obtained by hydrothermal synthesis. The title compound is isotypic with its $\mathrm{Cd}^{\mathrm{II}}$ and $\mathrm{Ca}^{\mathrm{II}}$ analogues. The structure is built up of an infinite $\left\{\left[\mathrm{Mn}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}\right]^{4-}\right\}_{n}$ chain running along [100], which consists of alternate MnO_{6} octahedra and $\left[\mathrm{PO}_{4}\right]$ tetrahedra, in which the centrosymmetric MnO_{6} octahedra share their four equatorial O -atom corners with tetrahedral $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]$ groups and their two axial apices with tetrahedral $\left[\mathrm{PO}_{2}(\mathrm{OH})_{2}\right]$ groups. These chains are held together by BaO_{9} coordination polyhedra, developing into a three-dimensional structure. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds additionally stabilize the structural set-up. Due to the ionic radius of Mn^{2+} being much smaller than those of Ca^{2+} and Cd^{2+}, this may imply that their adopted structure type has a great tolerance for incorporating various ions and the exploitation of more diverse compounds in the future is encouraged.

Related literature

For background to transition metal phosphates, see: Cheetham et al. (1999); Mao et al. (2000); Mi et al. (2000); Sun et al. (2012); Escobal et al. (1999). For isotypic structures, see: Ben Taher et al. (2001) for $\mathrm{CdBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$; Ben Tahar et al. (1999) and Toumi et al. (1997) for $\mathrm{CaBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$. For the bond-valence method, see: Brown (2002). For ionic radii, see: Shannon (1976).

Experimental

Crystal data

$\mathrm{MnBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
$M_{r}=715.55$
Monoclinic, $P 2_{1} / c$
$a=5.4168$ (10) \AA 。
$b=10.1048$ (19) \AA
$c=12.183(2) \AA$
$\beta=100.199$ (3) ${ }^{\circ}$
$V=656.3(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation

$$
\mu=7.46 \mathrm{~mm}^{-1}
$$

$$
T=173 \mathrm{~K}
$$

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)

$$
T_{\min }=0.257, T_{\max }=0.587
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.075$
$S=1.04$
1 restraint
All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.88 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.03 \mathrm{e}^{-3}$
$0.25 \times 0.22 \times 0.08 \mathrm{~mm}$

3807 measured reflections 1515 independent reflections 1491 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

1515 reflections

116 parameters

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H1 $\cdots \mathrm{O}^{\text {i }}$	$0.79(8)$	$1.82(8)$	$2.600(4)$	$172(7)$
O7-H2 $\cdots 5^{\text {ii }}$	$0.95(7)$	$1.65(7)$	$2.504(4)$	$149(6)$
O8-H3 \cdots O2 $^{\text {iii }}$	$0.80(2)$	$1.82(2)$	$2.623(4)$	$178(8)$
Symmetry codes: (i) $x+1,-y+\frac{1}{2}, z-\frac{1}{2} ;$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;$ (iii) $x-1, y, z$.				

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (No. 40972035) and the Scientific and Technological Innovation Platform of Fujian Province (No. 2006L2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2203).

References

Ben Tahar, L., Smiri, L. \& Driss, A. (1999). Acta Cryst. C55, 1757-1759.
Ben Taher, L., Smiri, L. \& Bulou, A. (2001). J. Solid State Chem. 161, 97-105. Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheetham, A. K., Ferey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Dowty, E. (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Escobal, J., Mesa, J. L., Pizarro, J. L., Lezama, L., Olazcuaga, R. \& Rojo, T. (1999). J. Mater. Chem. 9, 2691-2695.

Mao, S.-Y., Huang, Y.-X., Wei, Z.-B., Mi, J.-X., Huang, Z.-L. \& Zhao, J.-T. (2000). J. Solid State Chem. 149, 292-297.

Mi, J.-X., Zhao, J.-T., Mao, S.-Y., Huang, Y.-X., Engelhardt, H. \& Kniep, R. Z. (2000). Z. Kristallogr. New Cryst. Struct. 215, 201-202.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, W., Huang, Y.-X., Pan, Y. M. \& Mi, J.-X. (2012). J. Solid State Chem. 187, 89-96.
Toumi, M., Chabchoub, S., Smiri-Dogguy, L. \& Laligant, Y. (1997). Eur. J. Solid State Inorg. Chem. 34, 1249-1257.

supplementary materials

Acta Cryst. (2012). E68, 149 [doi:10.1107/S1600536812022775]

$\mathbf{M n B a}_{\mathbf{2}}\left(\mathrm{HPO}_{4}\right)_{\mathbf{2}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{PO}_{4}\right)_{\mathbf{2}}$

Wei Sun, Li-Zhi Sun, Teng-Teng Zhu, Biao-Chun Zhao and Jin-Xiao Mi

Comment

Microporous phosphate materials based on transition metal elements have been extensively studied due to their potential optical, electrical, magnetic, and catalytic properties, as well as some interesting properties which are inaccessible to zeolites and other frameworks based on main-group elements only (Cheetham et al., 1999). As a part of our systematical investigation concerning the synthesis and spectroscopic studies of phosphates with transition metal ions, e.g. $\mathrm{V}^{3+}, \mathrm{Cr}^{3+}$, Fe^{3+} and Co^{2+} etc. (Mao et al., 2000; Mi et al., 2000; Sun et al., 2012), herein we report the crystal structure of $\mathrm{MnBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, which has been prepared under hydrothermal conditions. To the best of our knowledge, there is very scant information on manganese barium hydroxy-hydrated phosphates. This is the second hydroxy-hydrated phosphate after the compound of $\mathrm{Ba}\left(\mathrm{MnPO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Escobal et al., 1999).

The title compound, $\mathrm{MnBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, is isotypic to its Cd and Ca analogues (Ben Taher et al., 2001; Ben Tahar et al., 1999 \& Toumi et al., 1997). In the structure, the asymmetric unit contains one Mn atom, two crystallographically distinct P atoms and one Ba atom (Figs $1-3$). Mn1 lies on the inversion center (1/2,0,1/2) (i.e. $2 d$) and adopts slightly distorted octahedral coordination with an average bond distance of $\mathrm{Mn}-\mathrm{O}=2.206 \AA$. The $\left[\mathrm{MnO}_{6}\right]$ octahedron has six Ocorners each fused by corner-sharing to an phosphate tetrahedron, four equatorial O-corners to tetrahedral $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]$ groups and two axial apices to tetrahedral $\left[\mathrm{PO}_{2}(\mathrm{OH})_{2}\right]$ groups. P 1 is surrounded by three O atoms and one OH group forming a tetrahedral hydrogenphosphate group with an average bond length of $\mathrm{P}-\mathrm{O}=1.541 \AA$, while P 2 is coordinated to two O atoms and two OH groups forming a tetrahedral dihydrogenphosphate group with $d(\mathrm{P}-\mathrm{O})_{\mathrm{av}}=1.543 \AA$. Two hydrogenphosphate $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]$ groups bridge pairs of vertices from each octahedron via their common O-corners, and vice versa, subsequently to develop into a chain running along the direction of [100], and each side of which is decorated by flanking dihydrogenphosphate $\left[\mathrm{PO}_{2}(\mathrm{OH})_{2}\right]$ groups (Fig. 2). The infinite $\left\{\left[\mathrm{Mn}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}\right]^{4}\right\}_{\mathrm{n}}$ anionic chains are held together by BaO_{9} coordination spheres, which are composed of barium ions $\left(\mathrm{Ba}^{2+}\right)$ surrounded by nine adjacent oxygen atoms with an average bond distance of $\mathrm{Ba}-\mathrm{O}=2.868 \AA$, developing into a three-dimensional structure (Figs 1,3) The structural set-up is additionally stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which occur between $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]$ and $\left[\mathrm{PO}_{2}(\mathrm{OH})_{2}\right]$, and form a two-dimensional hydrogen bonding network parallel to the plane of (100). With regard to the $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]$ groups, one of O-corners bridged to $\left[\mathrm{MnO}_{6}\right]$ octahedra (i.e. O 2) and one non-bridged O-corner (i.e. O5) as well as the OH terminal link individually to their adjacent $\left[\mathrm{PO}_{2}(\mathrm{OH})_{2}\right]$ groups via hydrogen bonds (i.e. 1 OH donor +2 acceptors). For $\left[\mathrm{PO}_{2}(\mathrm{OH})_{2}\right]$ groups, except for O 3 connected to a $\left[\mathrm{MnO}_{6}\right]$ octahedron, O 4 and two OH terminals link to three $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]$ groups via hydrogen bonds (i.e. 2 OH donors +1 acceptor) (Fig. 1). The connectivity of hydrogen bonds is further confirmed by a bond-valence-sum calculation. The bond-valence-sum calculation shows that the bond valence sums of $\mathrm{Ba} 1, \mathrm{Mn} 1, \mathrm{P} 1$ and P 2 are $1.99,1.96,4.76$ and 4.73 valence units (v.u.), respectively, while those of oxygen atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4, \mathrm{O} 5, \mathrm{O} 6, \mathrm{O} 7$ and O 8 are $-1.79,-1.63,-1.81,-1.65,-1.65,-1.36,-1.31$ and -1.27 v.u., respectively (Brown, 2002). Oxygen atoms $\mathrm{O} 6, \mathrm{O} 7$ and O 8 with the bond valence sums in the ranges of -1.36 to -1.27 v.u. are protonated for compensating the negative charge (i.e. of hydroxy oxygen atoms). Oxygen atoms $\mathrm{O} 2, \mathrm{O} 4$ and O 5 with the bond valence
sums of -1.63 to -1.65 u.v. require a hydrogen bond to compensate the negative charge. This is why among three oxygen atoms ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3$) which link to $\left[\mathrm{MnO}_{6}\right]$ octahedra, only O 2 is involved in a hydrogen bond. Due to the 6-coordinate effective ionic radius of $\mathrm{Mn}^{2+}(0.830 \AA, \mathrm{HS})$ is much smaller than those of $\mathrm{Ca}^{2+}(1.00 \AA)$ and $\mathrm{Cd}^{2+}(0.95 \AA)($ Shannon, 1976), this implies that their adopted structure type has a great tolerance for incorporating various ions and the exploitation on more diverse compounds in the future are encouraged.

Experimental

The title compound, $\mathrm{MnBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ was synthesized by using a hydrothermal method. Typically a mixture of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(1.04 \mathrm{~g}), \mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.98 \mathrm{~g}), \mathrm{KBF}_{4}(0.60 \mathrm{~g})$ and $\mathrm{H}_{3} \mathrm{PO}_{4}(2 \mathrm{ml})$ with the molar ratio of
$\mathrm{Ba}: \mathrm{Mn}: \mathrm{P}=2: 2: 15$ was prepared, and transferred into a Teflon-lined stainless-steel autoclave (30 ml in volume), then heated to and held at 463 K for 3 days. Transparent, light pink crystals of the title compound were obtained by filtration, rinsed with distilled water several times, and dried in desiccators. Optical examination and powder X-ray diffraction (PXRD) analyses were used to identify the phases of the solid products. Scanning electron microscopy was used to document the crystal morphologies (Fig. 4). Chemical compositions of selected crystals were examined by use of an Oxford Instruments Energy Dispersive X-ray Spectrometer (EDX), which confirmed the ratio of $\mathrm{Mn}: \mathrm{Ba}: \mathrm{P}=1: 2: 4$ from single-crystal data.

Refinement

All hydrogen positions were located from the difference Fourier map and tentatively refined without any restraint. Then a common variable was applied for the refinement of isotropic atomic displacement parameters ($U_{\text {iso }}$) of all hydrogen atoms. After refinement the bond distance of $\mathrm{O} 8-\mathrm{H} 3$ became improper, so soft restraints on both $U_{\text {iso }}$ and the bond length $(d(\mathrm{O}-\mathrm{H})=0.82(2) \AA)$ were used for H 3 during running the refinement.

Computing details

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1
Crystal structure of $\mathrm{MnBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$. Upper: viewing down approximately along the direction of [100]. Down: the representation of hydrogen bonds occurring between $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]$ groups and $\left[\mathrm{PO}_{2}(\mathrm{OH})_{2}\right]$ groups. ($\left[\mathrm{MnO}_{6}\right]$ are drawn as pink octahedra; $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]$ as blue tetrahedra; $\left[\mathrm{PO}_{2}(\mathrm{OH})_{2}\right]$ as green tetrahedra; Ba as black spheres; Mn as pink spheres; H as small black balls).

Figure 2
Crystal structure of $\mathrm{MnBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$. Upper: the infinite $\left\{\left[\mathrm{Mn}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}\right]^{4}\right\}_{\mathrm{n}}$ chain running along the direction of [100]; Down: coordination environment of barium.

Figure 3
Coordination environment of barium, manganese, and phosphorus atoms, with displacement ellipsoids drawn at the 50% probability level (symmetry codes: (i) $x,-y+1 / 2, z-1 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2, y+1 / 2,-z+1 / 2$; (iv) $-x$ $+1, y+1 / 2,-z+1 / 2 ;(\mathrm{v}) x+1, y, z ;(\mathrm{vi})-x+1,-y,-z+1 ;(\mathrm{vii})-x+2,-y,-z+1)$

Figure 4
The crystal morphology and chemical composition. Upper: image of scanning electron microscopy for the crystal morphology. Down: the chemical composition of the selected crystal measured by the EDX.
manganese(II) dibarium bis(hydrogenphosphate) bis(dihydrogenphosphate)

Crystal data

$\mathrm{MnBa}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
$M_{r}=715.55$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=5.4168$ (10) \AA
$b=10.1048(19) \AA$
$c=12.183$ (2) \AA
$\beta=100.199(3)^{\circ}$

$$
\begin{aligned}
& V=656.3(2) \AA^{3} \\
& Z=2 \\
& F(000)=662 \\
& D_{\mathrm{x}}=3.621 \mathrm{Mg} \mathrm{~m} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3807 \text { reflections } \\
& \theta=2.6-28.2^{\circ} \\
& \mu=7.46 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=173 \mathrm{~K}$
Prism, light pink

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
1265 images, $\varphi=0,90,180$ degree, and $\Delta \omega=0.3$
degree, $\chi=54.74$ degree scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.257, T_{\text {max }}=0.587$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.075$
$S=1.04$
1515 reflections
116 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
$0.25 \times 0.22 \times 0.08 \mathrm{~mm}$

> 3807 measured reflections
> 1515 independent reflections
> 1491 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.021$
> $\theta_{\max }=28.2^{\circ}, \theta_{\min }=2.6^{\circ}$
> $h=-7 \rightarrow 7$
> $k=-13 \rightarrow 8$
> $l=-15 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.053 P)^{2}+1.2855 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.88$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.03$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Ba1	$0.63461(4)$	$0.35046(2)$	$0.322960(18)$	$0.00907(12)$
Mn1	0.5000	0.0000	0.5000	$0.00694(18)$
P1	$0.91926(18)$	$0.01271(9)$	$0.30714(8)$	$0.0065(2)$
P2	$0.26314(18)$	$0.30069(10)$	$0.55243(8)$	$0.0072(2)$
O1	$0.6833(5)$	$0.0118(3)$	$0.3582(2)$	$0.0111(6)$
O2	$0.8498(5)$	$0.0497(3)$	$0.6203(2)$	$0.0104(5)$
O3	$0.4241(5)$	$0.2178(3)$	$0.4898(2)$	$0.0098(5)$
O4	$0.3420(5)$	$0.3043(3)$	$0.6778(2)$	$0.0121(6)$
O5	$0.8762(5)$	$-0.0571(3)$	$0.1943(2)$	$0.0104(6)$
O6	$0.9749(6)$	$0.1640(3)$	$0.2869(3)$	$0.0113(6)$
O7	$0.2616(5)$	$0.4494(3)$	$0.5130(2)$	$0.0103(5)$
O8	$-0.0222(5)$	$0.2624(3)$	$0.5203(2)$	$0.0104(5)$
H1	$1.093(15)$	$0.168(6)$	$0.258(7)$	$0.038(11)^{*}$
H2	$0.211(13)$	$0.479(7)$	$0.439(6)$	$0.038(11)^{*}$

H 3	$-0.065(13)$	$0.197(5)$	$0.550(5)$	$0.038(11)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.00826(17)$	$0.01023(17)$	$0.00887(16)$	$-0.00059(7)$	$0.00195(10)$	$-0.00110(7)$
Mn1	$0.0076(4)$	$0.0059(4)$	$0.0078(4)$	$-0.0006(3)$	$0.0029(3)$	$-0.0002(3)$
P1	$0.0079(5)$	$0.0046(4)$	$0.0074(4)$	$0.0003(3)$	$0.0026(3)$	$-0.0002(3)$
P2	$0.0083(5)$	$0.0058(4)$	$0.0080(4)$	$0.0005(3)$	$0.0027(3)$	$0.0001(3)$
O1	$0.0105(14)$	$0.0141(14)$	$0.0099(13)$	$0.0013(11)$	$0.0047(11)$	$0.0026(11)$
O2	$0.0078(13)$	$0.0084(13)$	$0.0140(13)$	$0.0005(10)$	$-0.0007(10)$	$-0.0007(10)$
O3	$0.0120(14)$	$0.0076(13)$	$0.0107(13)$	$0.0008(10)$	$0.0043(10)$	$-0.0006(10)$
O4	$0.0113(14)$	$0.0143(16)$	$0.0103(14)$	$0.0010(11)$	$0.0007(11)$	$0.0005(10)$
O5	$0.0144(15)$	$0.0082(13)$	$0.0087(12)$	$0.0008(10)$	$0.0025(10)$	$-0.0018(10)$
O6	$0.0145(16)$	$0.0090(13)$	$0.0120(14)$	$-0.0006(10)$	$0.0064(12)$	$-0.0016(10)$
O7	$0.0139(14)$	$0.0050(12)$	$0.0119(13)$	$-0.0005(10)$	$0.0016(11)$	$-0.0008(10)$
O8	$0.0110(14)$	$0.0102(13)$	$0.0104(13)$	$-0.0022(11)$	$0.0029(10)$	$0.0036(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Ba} 1-\mathrm{O} 4^{\text {i }}$	2.663 (3)	$\mathrm{Mn} 1-\mathrm{O}^{\text {vi }}$	2.238 (3)
$\mathrm{Ba}-\mathrm{O} 6$	2.726 (3)	$\mathrm{Mn} 1-\mathrm{O} 3$	2.238 (3)
$\mathrm{Ba} 1-\mathrm{O} 7^{\text {ii }}$	2.829 (3)	$\mathrm{Mn} 1-\mathrm{O} 3^{\text {vi }}$	2.238 (3)
$\mathrm{Ba} 1-\mathrm{O} 3$	2.837 (3)	P1-O1	1.518 (3)
$\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	2.852 (3)	P1-O5	1.526 (3)
$\mathrm{Ba} 1-\mathrm{O} 5^{\text {iv }}$	2.892 (3)	$\mathrm{P} 1-\mathrm{O} 2^{\text {vii }}$	1.534 (3)
$\mathrm{Ba}-\mathrm{O} 8^{\text {v }}$	2.906 (3)	P1-06	1.586 (3)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iv }}$	3.025 (3)	P2-O3	1.510 (3)
$\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	3.081 (3)	P2-O4	1.512 (3)
$\mathrm{Mn} 1-\mathrm{Ol}^{\text {vi }}$	2.142 (3)	P2-O8	1.574 (3)
$\mathrm{Mn} 1-\mathrm{O} 1$	2.142 (3)	P2-O7	1.577 (3)
$\mathrm{Mn} 1-\mathrm{O} 2$	2.238 (3)		
$\mathrm{O} 4{ }^{\mathrm{i}}$ - $\mathrm{Ba} 1-\mathrm{O} 6$	80.03 (9)	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3$	90.42 (10)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{O} 7^{\text {ii }}$	155.43 (9)	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 3$	86.66 (10)
$\mathrm{O} 6-\mathrm{Ba} 1-7^{7 i}$	123.55 (9)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O} 3$	93.34 (10)
$\mathrm{O} 4{ }^{\text {i }} \mathrm{Ba} 1-\mathrm{O} 3$	86.04 (8)	$\mathrm{O} 1^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O} 3^{\text {vi }}$	90.42 (10)
O6-Bal-O3	99.08 (9)	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O}^{\text {vi }}$	89.58 (10)
$\mathrm{O} 7{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 3$	83.49 (8)	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O}^{\text {vi }}$	93.34 (10)
O 4 - $\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	126.50 (8)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Mn} 1-\mathrm{O} 3^{\text {vi }}$	86.66 (10)
O6- $\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	63.30 (9)	$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 3^{\text {vi }}$	180.0
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	75.33 (8)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 5$	111.18 (17)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	134.74 (8)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2{ }^{\text {vii }}$	114.92 (17)
O4i- ${ }^{\text {i }}$ - ${ }^{\text {O }} 5^{\text {iv }}$	72.07 (9)	$\mathrm{O} 5-\mathrm{P} 1-\mathrm{O} 2{ }^{\text {vii }}$	107.95 (16)
O6-Bal-O5 ${ }^{\text {iv }}$	151.29 (9)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 6$	105.48 (17)
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 5^{\text {iv }}$	83.60 (8)	O5-P1-O6	107.96 (17)
O3-Ba1-O5 ${ }^{\text {iv }}$	72.78 (8)	O2 ${ }^{\text {vii }}$-P1-O6	109.14 (17)
$\mathrm{O} 5^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 5^{\text {iv }}$	141.11 (11)	O3-P2-O4	116.01 (17)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 8^{v}$	126.01 (9)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 8$	111.55 (16)
$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O}^{v}$	64.53 (9)	O4-P2-O8	110.27 (16)

supplementary materials

$\mathrm{O} 7{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 8^{\mathrm{v}}$	67.45 (8)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 7$	110.33 (16)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O}^{\text {v }}$	62.73 (8)	$\mathrm{O} 4-\mathrm{P} 2-\mathrm{O} 7$	105.67 (18)
$\mathrm{O} 5^{\text {iii- }} \mathrm{Ba} 1-\mathrm{O} 8^{v}$	72.22 (8)	O8-P2-O7	101.92 (15)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 8^{\text {v }}$	128.50 (8)	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Mn} 1$	151.07 (19)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iv }}$	68.71 (9)	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {viii }}$	96.65 (14)
$\mathrm{O} 6-\mathrm{Ba}-\mathrm{Ol}^{\text {iv }}$	124.66 (9)	$\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {viii }}$	105.85 (11)
$\mathrm{O} 7^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iv }}$	98.43 (8)	$\mathrm{P} 1{ }^{\text {vii - }}$ O2-Mn1	142.65 (17)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{Ol}^{\text {iv }}$	121.91 (8)	$\mathrm{P} 1^{\text {vii }}-\mathrm{O} 2-\mathrm{Ba} 1^{\text {ix }}$	93.35 (13)
$\mathrm{O} 5^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iv }}$	100.73 (8)	$\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {ix }}$	101.64 (10)
$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iv }}$	50.17 (8)	$\mathrm{P} 2-\mathrm{O} 3-\mathrm{Mn} 1$	129.37 (16)
$\mathrm{O} 8^{v}-\mathrm{Ba}-\mathrm{O}^{\text {iv }}$	165.22 (8)	$\mathrm{P} 2-\mathrm{O} 3-\mathrm{Ba} 1$	116.17 (14)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	85.71 (8)	$\mathrm{Mn} 1-\mathrm{O} 3-\mathrm{Ba} 1$	114.29 (11)
$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	74.60 (8)	$\mathrm{P} 2-\mathrm{O} 4-\mathrm{Ba} 1^{\text {ix }}$	133.27 (18)
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	106.01 (8)	$\mathrm{P} 1-\mathrm{O} 5-\mathrm{Ba} 1^{\text {x }}$	102.82 (13)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {i }}$	170.38 (8)	$\mathrm{P} 1-\mathrm{O} 5-\mathrm{Ba} 1^{\text {viii }}$	101.91 (13)
$\mathrm{O} 5^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	49.12 (8)	$\mathrm{Ba} 1^{\mathrm{x}}-\mathrm{O} 5-\mathrm{Ba} 1^{\text {viii }}$	141.10 (11)
$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	109.20 (8)	$\mathrm{P} 1-\mathrm{O} 6-\mathrm{Ba} 1$	119.25 (17)
$\mathrm{O} 8^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	119.07 (8)	P1-O6-H1	108 (5)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	59.06 (8)	$\mathrm{Ba} 1-\mathrm{O} 6-\mathrm{H} 1$	132 (5)
$\mathrm{O} 1^{\text {vi}}-\mathrm{Mn} 1-\mathrm{O} 1$	180.0	$\mathrm{P} 2-\mathrm{O} 7-\mathrm{Ba} 1^{\text {ii }}$	118.46 (15)
$\mathrm{O} 1{ }^{\text {vi}}-\mathrm{Mn} 1-\mathrm{O} 2$	86.79 (11)	$\mathrm{P} 2-\mathrm{O} 7-\mathrm{H} 2$	125 (4)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2$	93.21 (11)	$\mathrm{Ba} 1{ }^{\text {ii- }} \mathrm{O} 7-\mathrm{H} 2$	116 (4)
$\mathrm{O} 1^{\mathrm{vi}}-\mathrm{Mn} 1-\mathrm{O} 2^{\text {vi }}$	93.21 (11)	$\mathrm{P} 2-\mathrm{O} 8-\mathrm{Ba} 1^{\text {xi }}$	125.90 (14)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2^{\text {vi }}$	86.79 (11)	P2-O8-H3	116 (5)
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 2{ }^{\text {vi }}$	180.0	$\mathrm{Ba} 1^{\text {xi }}-\mathrm{O} 8-\mathrm{H} 3$	116 (5)
$\mathrm{O} 1^{\text {vi}}-\mathrm{Mn} 1-\mathrm{O} 3$	89.58 (10)		

Symmetry codes: (i) $x,-y+1 / 2, z-1 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2, y+1 / 2,-z+1 / 2$; (iv) $-x+1, y+1 / 2,-z+1 / 2$; (v) $x+1, y, z$; (vi) $-x+1,-y,-z+1$; (vii) $-x+2,-y,-z+1$; (viii) $-x+1, y-1 / 2,-z+1 / 2$; (ix) $x,-y+1 / 2, z+1 / 2$; (x) $-x+2, y-1 / 2,-z+1 / 2$; (xi) $x-1, y, z$.

Hydrogen-bond geometry (A, o)

$\underline{D-H \cdots A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {xii }}$	0.79 (8)	1.82 (8)	2.600 (4)	172 (7)
$\mathrm{O} 7-\mathrm{H} 2 \cdots \mathrm{O}^{5 \mathrm{iv}}$	0.95 (7)	1.65 (7)	2.504 (4)	149 (6)
$\mathrm{O} 8-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {xi }}$	0.80 (2)	1.82 (2)	2.623 (4)	178 (8)

Symmetry codes: (iv) $-x+1, y+1 / 2,-z+1 / 2$; (xi) $x-1, y, z$; (xii) $x+1,-y+1 / 2, z-1 / 2$.

